Isoflurane postconditioning reduces ischemia-induced nuclear factor-κB activation and interleukin 1β production to provide neuroprotection in rats and mice

… Their heart rates, breathing rates, and pulse oximeter oxygen saturation were monitored
continuously and noninvasively using a MouseOX Murine Plus Oximeter System (Starr Life
Sciences Corporation, Oakmont, PA, USA) as we did before ( Li and Zuo, 2011a and Li and Zuo … Application of isoflurane, a volatile anesthetic, after brain ischemia can reduce ischemic brain injury in rodents (isoflurane postconditioning). This study is designed to determine whether isoflurane postconditioning improves long-term neurological outcome after focal brain ischemia and whether this protection is mediated by attenuating neuroinflammation. Adult male Sprague–Dawley rats were subjected to a 90-min middle cerebral arterial occlusion (MCAO). Isoflurane postconditioning was performed by exposing rats to 2% isoflurane for 60 min immediately after the MCAO. Isoflurane postconditioning reduced brain infarct volumes, apoptotic cells in the ischemic penumbral brain tissues and neurological deficits of rats at 4 weeks after the MCAO. Isoflurane postconditioning reduced brain ischemia/reperfusion-induced nuclear transcription factor (NF)-κB (NF-κB) activation as well as interleukin 1β (IL-1β) and interleukin-6 production in the ischemic penumbral brain tissues at 24 h after the MCAO. IL-1β deficient mice had smaller brain infarct volumes and better neurological functions than wild-type mice at 24 h after a 90-min focal brain ischemia. Isoflurane posttreatment failed to induce neuroprotection in the IL-1β deficient mice. Our results suggest that isoflurane postconditioning improved long-term neurological outcome after transient focal brain ischemia. This protection may be mediated by inhibiting NF-κB activation and the production of the proinflammatory cytokine IL-1β.

Contact Form