A neonatal mouse model of intermittent hypoxia associated with features of apnea in premature infants

Abstract A neonatal mouse model of intermittent hypoxia (IH) simulating the recurring hypoxia/reoxygenation episodes of apnea of prematurity (AOP) was developed. C57BL/6 P2 pups were culled for exposure to either intermittent hypoxia or intermittent air as control. The IH paradigms consisted of alternation cycles of 20.9% O2 and either 8.0% or 5.7% O2 every 120 or 140 s for 6 h a day during daylight hours from day 2 to day 10 postnatally, i.e., roughly equivalent to human brain development in the perinatal period. IH exposures elicited modest to severe decrease in oxygen saturation along with bradycardia in neonatal mice, which were severity-dependent. Hypomyelination in both central and peripheral nervous systems was observed despite the absence of visible growth retardation. The neonatal mouse model of IH in this study partially fulfills the current diagnostic criteria with features of AOP, and provides opportunities to reproduce in rodents some of the pathophysiological changes associated with this disorder, such as alterations in myelination. Keywords Mouse model; Intermittent hypoxia; Infantile apnea; Apnea of prematurity; White matter